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Abstract – Estimation of the heat flux for a quenched solid tungsten sphere is demonstrated using a filter 
formulation. Even though the values of the thermal properties significantly change during quenching, nearly as 
accurate heat flux estimates as with a temperature-variable analyses are possible using the proposed filter 
method.  The filter algorithm is very efficient for the repeated analyses of similar tests. The filter solution 
method can utilize several IHCP methods including function specification and Tikhonov regularization.  
 
1. INTRODUCTION 
The determination of the heat flux at a surface of a body from transient temperature measurements inside the 
body is called the inverse heat conduction problem, IHCP. The IHCP can be linear or nonlinear depending 
upon whether the thermal properties are constant or functions of temperature. An efficient method of solution 
for the linear IHCP uses the filter coefficient method which is described in [2]. The use of the filter coefficient 
method for nonlinear IHCPs is demonstrated herein and has not been previously described.  
 The filter solution method for temperature-independent thermal properties is computationally very 
simple and efficient. The method involves a moving summation such as  
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The subscript M is the time index of the heat flux component (in W/m2) of interest; fj is the jth filter coefficient 
(W/m2-ºC); and  is the measured temperature (ºC) at times including those both before and after the 

time of interest which is denoted, t
fm M jY + −

M.  (The “true” or “model” temperature is denoted by the symbol T.) The 

indices mp and mf are for the past and future values, respectively, of the measured temperature;  is the 

total number of the measurement times.  (The index M also denotes the “first” future time.) A simple example 
is for the heat flux at the 25

maxj

th time and for mp  = 3 and mf  = 2 so that the heat flux at that time is estimated using 
                      (2) 25 1 26 2 25 3 24 4 23 5 2q̂ f Y f Y f Y f Y f Y= + + + +
The “future” temperatures are  The sum of the indices in each product of f times Y is equal to M - 
m

25 26 and .Y Y
f = 27. Another point is that the filter coefficients should sum to zero for the herein applications. For 

nonlinear cases the filter coefficients can vary with the temperature level. 
 In quenching tests, the same or similar device for heat flux measurement is repeatedly used. In such 
tests, a machined part or a calorimeter initially at an elevated temperature is plunged into a cold fluid.  In other 
situations, the process is continuous but has a periodic character, such as during casting parts with molten 
aluminum or forming bottles from molten glass. The filter solution of the nonlinear IHCP is particularly suited 
for these manufacturing instrumentation tasks because it does not require a beginning or end time in the 
analysis and also the method is relatively easy to understand and implement after the filter coefficients have 
been determined.  

The method has general applications in monitoring manufacturing processes and analysis of scientific 
experiments directed toward understanding of boiling, for example. This paper uses an example of quenching a 
1 cm diameter tungsten sphere; various modes of boiling can occur during the cooling phase. It is demonstrated 
herein that the heat flux components in such a case can be accurately estimated using a filter equation 
analogous to eqn. (1) with the coefficients being only weak functions of temperature, even though the 
temperatures may go from 1100  down to almost room temperature in just a few seconds.  C°
 The use of filter coefficients does not by itself introduce the required regularization [2] in the 
estimation of the heat flux. Instead the filter coefficients are generated with some method which incorporates 
regularization. Function specification [2] and Tikhonov regularization [2, 7] are possible methods as is 
mollification [5]. A method which transforms the linear IHCP into a nonlinear problem may not be used, such 
as when the conjugate gradient method is incorporated in the solution.   

The transient heat conduction equation for the sphere can be solved in any appropriate manner 
including finite elements, finite control volumes and exact methods of solution. The latter is shown to be 
possible in the example described below. Also inaccuracies in the thermal properties and errors in the 
temperature measurements [1] may not be compatible with an extremely accurate T-variable model for 
determining the filter coefficients. For these reasons, an analytical solution is employed in the direct solution.  
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2. DIRECT PROBLEM  
The direct problem can be described with a heat conduction model of a sphere of radius b which is  

 2
2

,   0 ,   0
k T Tr C r b t
r r r t

∂ ∂ ∂⎛ ⎞ = < <⎜ ⎟∂ ∂ ∂⎝ ⎠
>                        (3) 

which incorporates the assumption of the thermal conductivity, k, being independent of the model temperature 
T. The volumetric heat capacity, C, is also considered to be constant in the analysis. As will be demonstrated, 
the thermal properties can be assigned a series of constant values as the problem progresses. The initial 
temperature is assumed to be the constant T0 and the boundary conditions can be given by 

 (0, ) finite,   ( , ) ( )
TT t k b t q t
r

∂
= =

∂
                      (4) 

By giving the heat flux in this manner, the heat flux q(t) is positive when the sphere is heated and  negative 
when cooled. The temperature at center (r = 0) is measured at discrete times with uniform time steps,  
                          (5) max(0, ),   1,2,...,iY T i t i j≈ ∆ =
which is used to determine the heat flux at the outer radius b of the sphere.   
 Before discussing the inverse problem, the temperature solutions for two direct problems for the 
sphere with 1) constant (or square) and 2) triangular heat flux basis functions. Consider first the case of 
approximating transient heat flux histories with the piece-wise constant basis functions, 
                  (6)  1 piece-wise constant heat flux basis function= , ,   1,2,...,th

i i ii q t − < < = maxt t i j

t
Using the principle of superposition as expressed by Duhamel’s integral, eqn. (3.2.12) of [2] gives the 
temperature at time  by Mt M= ∆
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where iφ  is the temperature at r = 0 and time  for the heat flux  equal to unity (i.e.,  An analytical 

expression for the temperature in a sphere with a constant heat flux is [3, p. 272] 
it 0q 0 1).q =
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At the center of the sphere this expression yields 
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The eigenvalues are found from the transcendental equation, tan( )m mβ β= . Using the notation given in [3, 
Chap. 2], this problem is denoted RS02B1T0 where “RS” denotes the radial spherical coordinate, “02” denotes 
the finite T condition at r = 0 and a heat flux boundary condition at r = b, B1 denotes a boundary condition of a 
constant heat flux and T0 denotes a zero initial temperature. The upper two curves in Figure 1 are for this 
RS02B1T0 problem; the temperature at r = 0 is nearly zero until  = 0.04 when this temperature rise 
eventually reaches 0.03% that of the surface at that time.  

2/t bα

 Another function for approximating a curve uses linearly time-varying elements. Analogous to eqn. 
(6) we now can use triangular basis function which is equal to zero everywhere except in the ranges given by  
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This basis function requires the solution for a linearly increasing heat flux which can be written as 
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At the center of the sphere, eqn. (10a) yields 
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Figure 1. Temperatures in a solid sphere with a constant heat flux at r = b (denoted 
RS02B1T0) and a linearly increasing heat flux (denoted RS02B2T0).  
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This solution is denoted RS02B2T0 where the “B2” denotes a heat flux that varies linearly with time.  Plots of 
eqn. (10a,b) for r = 0 and b are given in Figure 1; see the lowest two curves which are for Notice 
that the derivative of eqns (10a,b) with respect to t/t

2
0/b tα =1.

1−

0 yields eqns (8a,b), which is referenced below.  
 
3. INVERSE HEAT CONDUCTION ALGORITHMS 
 
3.1 Function Specification: Constant heat flux basis functions 
One type of inverse heat conduction algorithm uses a temporary functional form of the future heat fluxes.  For 
the heat flux being constant, (that is, using piece-wise constant basis functions) for the rf future times 

 the estimated heat flux at time 1,  ,..., ,
fM M M rt t t+ + Mt is (see eqn. (7) and [2, eqn. (4.4.24)]) 
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This estimated heat flux ˆMq is best associated with the time of .   1/ 2Mt −

 
3.2 Function Specification: Triangular heat flux basis functions 
Now let us consider the case of the triangular basis functions which implies that the heat flux varies with linear 
segments such that  
                (12) 1 1 2 2 3 30 at 0, at , at , at , ... ati iq t q q t q q t q q t q q t i= = = = = = = t∆

iFor the time period of , the heat flux varies linearly in time such as 1it t t +< <

 1( ) i
i i i

t tq q q q
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−
= + −

∆
                         (13) 

Let iη  be equal to the temperature T at the center, r = 0, and at time  for a linearly increasing heat flux. 

Specifically let 
it

1η  be the temperature at time 1t t= ∆  for the heat flux =1; also let 1q 2η  be the temperature at 

time  for the heat flux = 2 at  and 2t 2q 1 2t t= ∆ 1 1.q = Then explicitly we have 

 
1 1 2 1

1 21 1, 2 1, 2,...,
(0, ) ,   (0,2 ) ,   (0, )
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iq q q q
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= = = =

= ∆ = ∆ = ∆
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               (14) 

The temperature at  is (using triangular basis functions and assuming the initial T, 1,2,..it i = 0 = 0)   
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Now the objective is to express the temperature at times M, M + 1, M + 2, …, 1fM r+ −  in terms of the heat 

fluxes at times M - 1 and M.  The temporary assumption is that the heat flux is varying in a linear fashion 
starting at time  tM-1. The results are  
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To find the estimate of Mq , we minimize with respect to Mq the sum of squares function  
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Taking the first derivative of S with respect to Mq , etc. gives the triangular basis function heat flux estimator  
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 Both the piece-wise constant and triangular basis function representations for temperature given 
above, eqns (7) and (15), can be described by the matrix equation of  
                        (20) =T Xq
where 
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The components of this matrix are related to the constant and triangular basis function cases by 
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A matrix that is needed in the Tikhonov regularization method is  
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Notice that this is a symmetric matrix.  
 It can be helpful to examine the basis-function case components as a function of time. Figure 2 shows 
dimensionless values as a function of dimensionless time for  . The curve labeled “1”  2 2

0/ / 0.024t b t bα α∆ = =
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 Figure 2. Constant and triangular basis-function case components,  = 0.024.  2/t bα

 
is 0/( / )i q b kφ∆  and the curve labeled “2” is . The surprising point is that the piece-wise 
constant basis-function case curve is similar to the triangular basis function curve if it is plotted at 1⁄2 time step 
backward, that is, 0.012; see the “x” points, labeled curve 3 in Figure 2. That makes sense because 

2 2
0/[( / )( / )]q b k b tδ η α 0

iφ∆  is a 
forward difference approximation and is more accurate at the midpoint of the interval. If a smaller 
dimensionless time step such as is used, the overlapping of these two curves is almost 
complete. (See the relation between the two T histories mentioned below eqn. (10b).) Relative to estimation of 
the surface heat flux, the piece-wise constant and triangular basis function solutions using Tikhonov 
regularization should give very nearly the same results if the piece-wise constant basis function results are 
offset backward 1⁄2 of the time step. Consequently only the triangular basis-function approximation for 
Tikhonov regularization is considered in this paper.  

2/ 0.012t bα∆ =

 A couple more points are made regarding Figure 2. First, shapes of the curves for various time steps 
of  (which we also set equal to tt∆ 0) are the same for small dimensionless times. Second, the magnitude is 
directly proportional to . Consider eqn. (8b) for sufficiently large times such that the summation has 
disappeared (which according to Figure 2 is about ). Then using eqn. (8b) we can write 

t∆
2/ 0.2t bα∆ = 5
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                (24) 

Hence the magnitude of the constant basis functions is directly proportional to t∆ .  Notice for , 2/ 0.024t bα∆ =
which is used in Figure 2, that the value given by eqn. (24) is 0.072 which is maximum value shown in Figure 
2. Using the second difference of η  as defined by eqn. (15) and eqn. (10b) yields exactly the same result.  

 Now from eqn. (22) the 2 and i iφ δ η∆  values are simply related to the Xi components in the sensitivity 
matrix given by eqn. (21).  For sufficiently large dimensionless times, some terms in eqn. (23) are simply 
related to one another. For example, for  greater than about 0.25, diagonal elements can be given by  2/N t bα ∆
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 In zeroth order Tikhonov regularization [2], the sum of squares function  
                  (26) ( ) ( ) ( ) ( )T T T

T TS α α= − − + = − − +Y T Y T q q Y Xq Y Xq q qT

is minimized with respect to the parameter vector . The symbol is the measurement vector and the initial 

temperature is zero. The 

q Y

Tα  symbol is the Tikhonov regularization parameter; it is discussed in more detail in 

[2].  The estimated value heat flux vector, denoted , is then given by q̂
                      (27) 

1ˆ [ ]T T
Tα

−= +q X X I X Y
It is important to observe that eqn. (27) is a linear function of the measurements temperature vector Y.  
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Figure 3. Temperatures and thermal diffusivities at r = 0 and b for the solid tungsten ball example. 

 
3.3 Filter Coefficients 
The IHCP estimation equations, (eqns (11), (19) and (27)), are linear functions of the measurements and can be 
used to obtain the filter coefficients. In each case the filter coefficients are found by setting all the components 
of equal to zero except one which is set equal to unity.  Y

The filter coefficients calculated using the filter equation given by eqn. (1) can be written as  
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L L )
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                         (28) 

Consider now the function specification method and let ,f fm r=  the number of future time steps. Also let all  

                                  (29) 0 for all  except 1
fi rY i Y= =

Then the heat flux components are calculated using the appropriate algorithm, such as eqns (11) or (19). The 
heat flux components are then known for this special case. Setting M = 1 in eqn. (28) then yields 
                                  (30) 1 1 1 1 1ˆ ˆ0 1 ,   

frq f Y f f f q= + = ⋅ = = 1

2and setting M = 2 and again using eqn. (28) gives 2 ˆf q= . More generally we obtain 

 ˆ ,   1,2, ,j j pf q j m m= = +L f                                       (31) 

Basically the same procedure is followed to get the filter coefficients using the Tikhonov regularization 
equation given by eqn. (27). 
 
4. EXAMPLE 
 
4.1. Description 
An example of a solid tungsten ball with a radius of b = 0.005 m is considered. It is initially at 1100 ºC and 
quenched in a fluid. The heat flux leaving the tungsten ball is known as a function of time and is given by four 
straight lines. From t = 0 to 1 s the heat flux is zero; the q then decreases to -4,800,000 W/m2 at 1.5 s; q then 
increases to -300,000 W/m2 at 2  s; and q then increases to -180,000  W/m2 at 8 s. This is shown in the last 
figure, Figure 7. The measurement time step is 0.025 s. The temperature-dependent thermal properties are 
taken from Incropera and DeWitt [4] and are given in the below table. 
 

Temperature, ºC Thermal conductivity, k, W/m·C Thermal diffusivity, α, m2/s  
527 125 0.0000447 
727 118 0.0000413 
927 113 0.0000385 
1227 107 0.0000353 

 
Temperatures generated using the above information are shown in Figure 3. The temperature drops about 500 
ºC in one second and the maximum temperature from the center to outer radius is about 100 ºC.  The maximum 
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temperature gradient is 425 ºC /cm. See also the lowest two curves in Figure 3 which show that the increase in 
the thermal diffusivity is from about 366E-7 m2/s at 1100 ºC to 460E-7 m2/s at 600 ºC, a 25% increase.  
 
4.2. Filter Coefficients 
The filter coefficients are found as described above. Only one Y value is set equal to unity and all the others are 
set to zero.  The index i for setting Yi = 1 can be any value in the midrange, it should not be near the beginning 
nor near the end.  Although only one Y value equal to 1 is needed, four are used in Figure 4 to illustrate that 
very nearly the same filter coefficients are obtained for all locations of setting Y = 1 except those near the 
beginning and the end of the time interval. The curves in Figure 4 are for Y = 1 at the times of 0.1, 0.8, 1.6 and 
2.4 seconds, corresponding to the 4th, 32th, 64th and 96th times, respectively. The curve for Y4 = 1 is anomalous 
since the filter coefficients are much smaller than the other cases. The filter coefficients are the same in this 
example for Yn = 1 for about n starting at rf = 6 up to about 10 steps before the final time. The coefficients can 
be found from any one of the curves in Figure 4 except the first one.  
 The curves shown in Figure 4 are for the function specification filter coefficients for the linear basis- 
function algorithm, eqn. (19), for rf = 6 future times for the 927ºC tungsten properties; the dimensionless time 
step is  = 0.0385. This is such a small dimensionless time step that negligible information regarding the 
heated surface is obtained in one time step; see Figure 2. In 6 time steps, the dimensionless time covered is 
0.231 at which time Figure 2 reveals that a great deal of information regarding the heated surface is obtained; 
this is reflected by the filter coefficients shown in Figure 4.  

2/t bα∆

Basically the same procedure is followed to get the filter coefficients using the Tikhonov 
regularization equation given by eqn. (27). See Figure 5 which shows the Tikhonov filter coefficients for this 
tungsten example with measurements of 0.025 s time steps, linear basis functions, properties evaluated at 927 
ºC, and zeroth order Tikhonov regularization parameter value of . Although only one Y =1 
is needed to obtain the filter coefficients, five curves are shown (Y=1 at t = 0.05, 0.8, 1.6, 2.4 and 3.375). Again 
we note that the mid-range of filter coefficients are the same in value, those Y =1 at t = 0.8, 1.6 and 2.4 in 
Figure 5, but the beginning and end values are different; hence calculation at the beginning times should use 
data about 0.3 s (in this example) before the first heat flux of interest. Heat fluxes should not be estimated near 
the end of the data.   

10 2 2 410 C s /mTα
−= ⋅

 The filter coefficient curves shown in Figs. 4 and 5 are derived using quite different IHCP algorithms 
yet are quite similar. (They could be made even more similar by adjusting the regularization parameters for 
each method which are  andfr .Tα )  The characteristics of these curves are important and now considered. 

There is an anticipatory quality; the t = 0.8 s curve of Figure 5, for example, shows a rise about 0.45 s which is 
well before the Y-impulse at 0.8 s. At the time step before 0.8 s, namely 0.775 s, the filter coefficient abruptly 
drops to a minimum value. The magnitudes of the filter coefficients can provide insight into the effects of 
measurement errors. For an example Figure 5 is used; an error of 1ºC can first cause an error in the surface 
heat flux of  about +10,000 W/m2 followed shortly thereafter with an error of about -14,000 W/m2.  These error 
values should be compared with the temperatures and heat fluxes in the example. From Figure 3, the maximum 
temperature is 1100 ºC and the maximum temperature drop across the ball is about 100ºC. It is not 
unreasonable to expect temperatures measured to have errors about 10ºC in this case. The maximum heat flux 
magnitude in the example is 4,800,000 so an error of 10 times 14,000 = 140,000 (or 3% of the maximum 
value) would not be unsatisfactory. However, when the heat flux is down to about 300,000, an error of 140,000 
may not be satisfactory.  
 Another point relates to the duration of non-zero values of the filter coefficients, which in symbols is 
the value of ; it is about 0.5 s in Figure 5 but the region where the changes of f( )p fm m t+ ∆ j are the greatest is 

only about 0.25 s.  In this latter time period the thermal diffusivity at r = 0 changes only 9%. Fortunately the 
effects upon the heat flux of such property changes are not large compared to the effects of temperature 
measurement errors or regularization.  See Figure 6 which shows the filter coefficients for 527, 927 and 1227 
ºC.  The duration of non-zero filter values is about the same in each case. Moreover one can infer from Figure 
6 that linear interpolation in temperature of the filter coefficients is appropriate. 
 
4.3. Numerical values 
Values of the heat flux for the example using 0th order Tikhonov regularization are shown in Figure 7 
with , time steps of 0.025 s and the properties evaluated at 927 ºC.  The exact heat flux 
values are depicted by the solid straight lines and the estimated heat flux values by the dots. The heat flux is 
slightly delayed compared to the exact values but the direct use of the whole domain Tikhonov regularization 
method gives nearly the same results when the thermal properties are evaluated at 927 ºC. The heat flux 
estimate at time 1.25 s in Figure 7 is -2,209,000 W/m

10 2 2 410 C s /mTα
−= ⋅

2, compared to the true value of -2,400,000 W/m2.   
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Figure 4. Function specification filter coefficients for solid sphere of tungsten. rf  = 6,  = 0.025 s.  t∆
Y = 1 at 0.1 s, 0.8 s, 1.6 s and 2.4 s, or time index of M = 4, 32, 64 and 96. Any one of the last three 
filter coefficient curves can be used.   
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Figure 5. Tikhonov 0th order filter coefficients for tungsten example, t∆  = 0.025 s, Tα  = 1.0E-10 

, triangular basis functions. Properties at 927 ºC. Y = 1 at t = 0.05, 0.8, 1.6, 2.4 and 3.375 s. 
Any one of the three middle curves can be used.  
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Figure 6. Tikhonov 0th order filter coefficients for tungsten ball example for properties at 527, 927 and 
1227 ºC, Y = 1 at t = 0.375 s.  t∆  = 0.025 s, Tα  = 1.0E-10 , triangular heat flux basis 
functions.  
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Figure 7. Estimated heat flux using the filter algorithm with the coefficients coming from the 
Tikhonov 0th order algorithm with t∆  = 0.025 s, Tα  = 1.0E-10 , triangular heat flux basis 
functions. Properties at 927 C.  
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The errors at the times of 1.25, 1.5, 1.75 and 2.75 s are respectively, 191,000, 441,000, -197,000 and -11,970 
W/m2; the magnitudes of these errors are 8.0%, 9.2%, 8.2% and 4.2% relative to the respective exact values. If 
the same procedure is repeated with the thermal properties evaluated at 527 ºC, the corresponding errors are 
352,000, 651,000, -118,000 and -2206 W/m2, which are 15%, 14%, 4.9% and 0.8% in magnitude error 
compared to the exact values. This reveals that the heat fluxes are more accurate at the beginning times using 
properties evaluated at 927 ºC.   

The errors in estimating the heat flux are not mainly caused by the approximate analysis for the T-
dependent thermal properties. The regularization procedure itself causes the major error but the temperature at 
which the properties are evaluated is also important. The temperature at r = 0 at 1.25 s is 1066.8 C and the 
associated thermal properties are k = 110 W/m·C and α = 0.0000369 m2/s.  Consider three different exact 
analyses for estimating the heat flux at time 1.25 s. Using this exact “data,” the whole domain Tikhonov 
method yields the heat flux value of 2,248,000 W/m2. If the filter analysis is used with this same data, the heat 
flux of about 2,242,000 W/m2 is found, a difference about -0.3%. If the filter analysis (with the coefficients the 
same as those used to get the 2,242,000 value) is used for the temperatures calculated using the T-dependent 
thermal properties, the result is 2,270,000 W/m2, about 0.98% larger than 2,248,000.  Since each of these 
estimates is about 6% low compared to the correct value of 2,400,000 W/m2, the major error is caused by the 
regularization, not the treatment of the temperature variation of the thermal properties.  

 
5. CONCLUSIONS 
For the case of a spherical tungsten ball dropped into a cooling fluid, the heat flux leaving the ball is very 
large, resulting in the temperature dropping rapidly. The temperature gradients are also large in the ball, up to 
425 K/cm.  The calculation of the heat flux in such cases is usually done with a nonlinear IHCP analysis to 
treat the temperature-dependent thermal properties. This paper demonstrates that a linear filter-type analysis 
can be used to estimate the heat flux from transient temperature measurements in such cases.  Such an analysis 
can be very efficient for similar experiments that are repeated often and could even be part of the software 
associated with a heat flux measuring instrument. Many other repetitive experiments can utilize this filter 
analysis procedure.  
 The IHCP filter method can be extended to many other geometries and problems. It is particularly 
appropriate for continuous manufacturing processes that have periodic heating and cooling. The most 
technically-demanding aspects of determining the heat flux can be relegated to experts to determine the filter 
coefficients for a specific production problem. Then these filter coefficients can be applied without specific  
expertise, such as knowledge of the numerical solution of the transient heat conduction problem, selection of a 
regularizing method and selection of regularizing parameters.    
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